SafeMDP Documentation
Release 1.0

Matteo Turchetta, Felix Berkenkamp, Andreas Krause

November 18, 2016

Contents

1 API Documentation 1
1.1 Mainclasses o . i e e e e e e e e e e e 1
1.1.1 SafeMDP e e e e e 1

1.1.2 link_graph_and_safe_set 2

1.1.3 reachable_set e e 2

1.1.4 returnable_Set L. . e e e e e e e 2

1.2 Gridworld e e e e 3
1.2.1 GridWorld o e e e e e e 3

1.2.2 states_to_nodes e e e e e e e e e e e 5

1.2.3 0 nodes_to_States i e 6

1.24 draw_gp_sample e 6

1.2.5 grid_world_graph L 6

126 grid . . . e e e e e e e e 6

1.2.7 compute_true_safe_set e e e e e e 7

1.2.8 compute_true_S_hat L e 7

1.2.9 compute_S_hat0 e 7

1.2.10 shortest_path L. 8

1.2.11 path_to_boolean_matriX v v v i i et e e e e e e e e e e 8

1.2.12 safe_subpath e e e e e e 8

1.3 UHtes o e e e e e e e e 9
1.3.1 DifferenceKernel e e 9

1.3.2 max_out_degree e e e e e e e e e e e e e e 9

2 Indices and tables 1
Python Module Index 13

CHAPTER 1

API Documentation

The safemdp package implements tools for safe exploration in finite MDPs.

1.1 Main classes

These classes provide the main functionality for the safe exploration

SafeMDP(graph, gp, S_hat0, h, L[, beta]) Base class for safe exploration in MDPs.
link_graph_and_safe_ set(graph, safe_set) Link the safe set to the graph model.
reachable_set(graph, initial_nodes|, out]) Compute the safe, reachable set of a graph

returnable_set(graph, reverse_graph, ...[, out]) Compute the safe, returnable set of a graph

1.1.1 SafeMDP

class safemdp.SafeMDP (graph, gp, S_hat0, h, L, beta=2)
Base class for safe exploration in MDPs.

This class only provides basic options to compute the safely reachable and returnable sets. The actual update of
the safety feature must be done in a class that inherits from SafeMDP. See safempd.GridWorld for an example.

Parameters graph: networkx.DiGraph

The graph that models the MDP. Each edge has an attribute safe in its metadata, which
determines the safety of the transition.

gp: GPy.core.GPRegression

A Gaussian process model that can be used to determine the safety of transitions. Exact
structure depends heavily on the usecase.

S_hat0: boolean array

An array that has True on the ith position if the ith node in the graph is part of the safe
set.

h: float
The safety threshold.
L: float

The lipschitz constant

SafeMDP Documentation, Release 1.0

beta: float, optional

The confidence interval used by the GP model.

Methods

add_gp_observations(x_new,y_new) Add observations to the gp mode.
compute_S_hat() Compute the safely reachable set given the current safe_set.

add_gp_observations (x_new, y_new)
Add observations to the gp mode.

compute_S_hat ()
Compute the safely reachable set given the current safe_set.

1.1.2 link_graph_and_safe_set
safemdp.link_graph_and_safe_set (graph, safe_set)
Link the safe set to the graph model.
Parameters graph: nx.DiGraph()
safe_set: np.array

Safe set. For each node the edge (i, j) under action (a) is linked to safe_set[i, a]

1.1.3 reachable_ set
safemdp.reachable_set (graph, initial_nodes, out=None)
Compute the safe, reachable set of a graph
Parameters graph: nx.DiGraph

Directed graph. Each edge must have associated action metadata, which specifies the
action that this edge corresponds to. Each edge has an attribute [’safe’], which is a
boolean that indicates safety

initial_nodes: list

List of the initial, safe nodes that are used as a starting point to compute the reachable
set.

out: np.array

The array to write the results to. Is assumed to be False everywhere except at the initial
nodes

Returns reachable_set: np.array

Boolean array that indicates whether a node belongs to the reachable set.

1.1.4 returnable_set

safemdp.returnable_set (graph, reverse_graph, initial_nodes, out=None)
Compute the safe, returnable set of a graph

2 Chapter 1. API Documentation

SafeMDP Documentation, Release 1.0

Parameters graph: nx.DiGraph

Directed graph. Each edge must have associated action metadata, which specifies the
action that this edge corresponds to. Each edge has an attribute [’safe’], which is a

boolean that indicates safety

reverse_graph: nx.DiGraph

The reversed directed graph, graph.reverse()

initial_nodes: list

List of the initial, safe nodes that are used as a starting point to compute the returnable

set.

out: np.array

The array to write the results to. Is assumed to be False everywhere except at the initial

nodes

Returns returnable_set: np.array

Boolean array that indicates whether a node belongs to the returnable set.

1.2 Grid world

Some additional functionality specific to gridworlds.

GridWorld(gp, world_shape, step_size, beta, ...)

Grid world with Safe exploration

states_to_nodes(states, world_shape, step_size)

Convert physical states to node numbers.

nodes_to_states(nodes, world_shape, step_size)

Convert node numbers to physical states.

draw_gp_sample(kernel, world_shape, step_size)

Draws a sample from a Gaussian process distribution over a user

grid _world graph(world_size)

Create a graph that represents a grid world.

grid(world_shape, step_size)

Creates grids of coordinates and indices of state space

compute_true_safe_set(world_shape, altitude, h)

Computes the safe set given a perfect knowledge of the map

compute_true_S_hat(graph, safe_set, ...[, ...])

Compute the true safe set with reachability and returnability.

compute_S_hat 0(s, world_shape, n_actions, ...)

Compute a valid initial safe seed.

shortest_path(source, next_sample, G)

Computes shortest safe path from a source to the next state-action pair

path_to_boolean_matrix(path, graph, S)

Computes a S-like matrix for approaches where performances is based on

safe_subpath(path, altitudes, h)

Computes the maximum subpath of path along which the safety constrain

1.2.1 GridWorld

class safemdp.GridWorld (gp, world_shape, step_size, beta, altitudes, h, SO, S_hat0, L, update_dist=0)

Grid world with Safe exploration

Parameters gp: GPy.core.GP

Gaussian process that expresses our current belief over the safety feature

world_shape: shape

Tuple that contains the shape of the grid world n x m

step_size: tuple of floats

Tuple that contains the step sizes along each direction to create a linearly spaced grid

beta: float

1.2. Grid world

SafeMDP Documentation, Release 1.0

Scaling factor to determine the amplitude of the confidence intervals
altitudes: np.array

It contains the flattened n x m matrix where the altitudes of all the points in the map are
stored

h: float
Safety threshold
S0: np.array

n_states x (n_actions + 1) array of booleans that indicates which states (first column)
and which state-action pairs belong to the initial safe seed. Notice that, by convention
we initialize all the states to be safe

S_hat0: np.array or nan

n_states x (n_actions + 1) array of booleans that indicates which states (first column)
and which state-action pairs belong to the initial safe seed and satisfy recovery and
reachability properties. If it is nan, such a boolean matrix is computed during initializa-
tion

noise: float

Standard deviation of the measurement noise
L: float

Lipschitz constant to compute expanders
update_dist: int

Distance in unweighted graph used for confidence interval update. A sample will only
influence other nodes within this distance.

Methods
add_gp_observations(X_new, y_new) Add observations to the gp mode.
add_observat ion(node, action) Add an observation of the given state-action pair.
compute_S_hat() Compute the safely reachable set given the current safe_set.
compute_expanders() Compute the expanders based on the current estimate of S_hat.
plot_ S(safe_set[, action]) Plot the set of safe states
target_sample() Compute the next target (s, a) to sample (highest uncertainty within
update_confidence_interval([jacobian]) Updates the lower and the upper bound of the confidence intervals
update_sets() Update the sets S, S_hat and G taking with the available observation

add_gp_observations (x_new, y_new)
Add observations to the gp mode.

add_observation (node, action)
Add an observation of the given state-action pair.

Observing the pair (s, a) means adding an observation of the altitude at s and an observation of the altitude
at f(s, a)

Parameters node: int

Node index

4 Chapter 1. API Documentation

SafeMDP Documentation, Release 1.0

action: int
Action index

compute_S_hat ()
Compute the safely reachable set given the current safe_set.

compute_expanders ()
Compute the expanders based on the current estimate of S_hat.

plot_S (safe_set, action=0)
Plot the set of safe states

Parameters safe_set: np.array(dtype=bool)
n_states x (n_actions + 1) array of boolean values that indicates the safe set
action: int
The action for which we want to plot the safe set.

target_sample ()
Compute the next target (s, a) to sample (highest uncertainty within G or S_hat)

Returns node: int
The next node to sample
action: int
The next action to sample

update_confidence_interval (jacobian=False)
Updates the lower and the upper bound of the confidence intervals using then posterior distribution over
the gradients of the altitudes

Returns 1: np.array
lower bound of the safety feature (mean - beta*std)
u: np.array
upper bound of the safety feature (mean - beta*std)

update_sets ()
Update the sets S, S_hat and G taking with the available observation

1.2.2 states to nodes
safemdp.states_to_nodes (states, world_shape, step_size)
Convert physical states to node numbers.
Parameters states: np.array
States with physical coordinates
world_shape: tuple
The size of the grid_world
step_size: tuple
The step size of the grid world
Returns nodes: np.array

The node indices corresponding to the states

1.2. Grid world 5

SafeMDP Documentation, Release 1.0

1.2.3 nodes_to_states
safemdp.nodes_to_states (nodes, world_shape, step_size)
Convert node numbers to physical states.
Parameters nodes: np.array
Node indices of the grid world
world_shape: tuple
The size of the grid_world
step_size: np.array
The step size of the grid world
Returns states: np.array

The states in physical coordinates

1.2.4 draw_gp_sample
safemdp.draw_gp_sample (kernel, world_shape, step_size)
Draws a sample from a Gaussian process distribution over a user specified grid
Parameters kernel: GPy kernel
Defines the GP we draw a sample from
world_shape: tuple
Shape of the grid we use for sampling
step_size: tuple

Step size along any axis to find linearly spaced points

1.2.5 grid_world_graph
safemdp.grid_world_graph (world_size)
Create a graph that represents a grid world.

In the grid world there are four actions, (1, 2, 3, 4), which correspond to going (up, right, down, left) in the
x-y plane. The states are ordered so that np.arange(np.prod(world_size)).reshape(world_size) corresponds to
a matrix where increasing the row index corresponds to the x direction in the graph, and increasing y index
corresponds to the y direction.

Parameters world_size: tuple
The size of the grid world (rows, columns)
Returns graph: nx.DiGraph()

The directed graph representing the grid world.

1.2.6 grid

safemdp.grid (world_shape, step_size)
Creates grids of coordinates and indices of state space

6 Chapter 1. API Documentation

SafeMDP Documentation, Release 1.0

Parameters world_shape: tuple
Size of the grid world (rows, columns)
step_size: tuple
Phyiscal step size in the grid world
Returns states_ind: np.array
(n*m) x 2 array containing the indices of the states
states_coord: np.array

(n*m) x 2 array containing the coordinates of the states

1.2.7 compute_true_safe_set
safemdp.compute_true_safe_set (world_shape, altitude, h)
Computes the safe set given a perfect knowledge of the map
Parameters world_shape: tuple
altitude: np.array
1-d vector with altitudes for each node
h: float
Safety threshold for height differences
Returns true_safe: np.array

Boolean array n_states x (n_actions + 1).

1.2.8 compute_true_S_hat
safemdp.compute_true_S_hat (graph, safe_set, initial_nodes, reverse_graph=None)
Compute the true safe set with reachability and returnability.
Parameters graph: nx.DiGraph
safe_set: np.array
initial nodes: list of int
reverse_graph: nx.DiGraph
graph.reverse()
Returns true_safe: np.array

Boolean array n_states x (n_actions + 1).

1.2.9 compute_S_hat0
safemdp.compute_S_hatO0 (s, world_shape, n_actions, altitudes, step_size, h)
Compute a valid initial safe seed.

s: int or nan Vector index of the state where we start computing the safe seed from. If it is equal to nan, a state
is chosen at random

world_shape: tuple Size of the grid world (rows, columns)

1.2. Grid world 7

SafeMDP Documentation, Release 1.0

n_actions: int Number of actions available to the agent

altitudes: np.array It contains the flattened n x m matrix where the altitudes of all the points in the map are
stored

step_size: tuple step sizes along each direction to create a linearly spaced grid

h: float Safety threshold

S_hat: np.array Boolean array n_states x (n_actions + 1).

1.2.10 shortest_path
safemdp.shortest_path (source, next_sample, G)
Computes shortest safe path from a source to the next state-action pair the agent needs to sample
Parameters source: int
Staring node for the path
next_sample: (int, int)

Next state-action pair the agent needs to sample. First entry is the number that indicates
the state. Second entry indicates the action

G: networkx DiGraph
Graph that indicates the dynamics. It is linked to S matrix
Returns path: list

shortest safe path
1.2.11 path_to_boolean_matrix
safemdp.path_to_boolean_matrix (path, graph, S)

Computes a S-like matrix for approaches where performances is based on the trajectory of the agent (e.g. unsafe
or random exploration) Parameters - path: np.array

Contains the nodes that are visited along the path

graph: networkx.DiGraph Graph that indicates the dynamics

S: np.array Array describing the safe set (needed for initialization)

Returns bool_mat: np.array

S-like array that is true for all the states and state-action pairs along the path

1.2.12 safe_subpath

safemdp.safe_subpath (path, altitudes, h)
Computes the maximum subpath of path along which the safety constraint is not violated Parameters
path: np.array

Contains the nodes that are visited along the path

altitudes: np.array 1-d vector with altitudes for each node

8 Chapter 1. API Documentation

SafeMDP Documentation, Release 1.0

h: float Safety threshold

Returns subpath: np.array

Maximum subpath of path that fulfills the safety constraint

1.3 Utilities

The following are utilities to make testing and working with the library more pleasant.

DifferenceKernel(kernel) A fake kernel that can be used to predict differences two function values.
max_out_degree(graph) Compute the maximum out_degree of a graph

1.3.1 DifferenceKernel
class safemdp.DifferenceKernel (kernel)
A fake kernel that can be used to predict differences two function values.

Given a gp based on measurements, we aim to predict the difference between the function values at two different
test points, X1 and X2; that is, we want to obtain mean and variance of f(X1) - f(X2). Using this fake kernel,
this can be achieved with mean, var = gp.predict(np.hstack((X1, X2)), kern=DiffKernel(gp.kern))

Parameters kernel: GPy.kern.*

The kernel used by the GP

Methods

K(x1[, x2]) Equivalent of kern.K
Kdiag(x) Equivalent of kern.Kdiag for the difference prediction.

K (xI, x2=None)
Equivalent of kern.K

If only x1 is passed then it is assumed to contain the data for both whose differences we are
computing. Otherwise, x2 will contain these extended states (see PosteriorExact._raw_predict in
GPy/inference/latent_function_inference(/posterior.py)

Parameters x1: np.array
x2: np.array

Kdiag (x)
Equivalent of kern.Kdiag for the difference prediction.

Parameters x: np.array

1.3.2 max_out_degree

safemdp.max_out_degree (graph)
Compute the maximum out_degree of a graph

Parameters graph: nx.DiGraph

1.3. Utilities 9

SafeMDP Documentation, Release 1.0

Returns max_out_degree: int

The maximum out_degree of the graph

10 Chapter 1. API Documentation

CHAPTER 2

Indices and tables

¢ genindex
* modindex

e search

11

SafeMDP Documentation, Release 1.0

12 Chapter 2. Indices and tables

Python Module Index

S
safemdp, 1

13

SafeMDP Documentation, Release 1.0

14 Python Module Index

Index

A

add_gp_observations() (safemdp.GridWorld method), 4
add_gp_observations() (safemdp.SafeMDP method), 2
add_observation() (safemdp.GridWorld method), 4

C

compute_expanders() (safemdp.GridWorld method), 5
compute_S_hat() (safemdp.GridWorld method), 5
compute_S_hat() (safemdp.SafeMDP method), 2
compute_S_hat0O() (in module safemdp), 7
compute_true_S_hat() (in module safemdp), 7
compute_true_safe_set() (in module safemdp), 7

D

DifferenceKernel (class in safemdp), 9
draw_gp_sample() (in module safemdp), 6

G

grid() (in module safemdp), 6
grid_world_graph() (in module safemdp), 6
GridWorld (class in safemdp), 3

K

K() (safemdp.DifferenceKernel method), 9
Kdiag() (safemdp.DifferenceKernel method), 9

L

link_graph_and_safe_set() (in module safemdp), 2

M

max_out_degree() (in module safemdp), 9

N

nodes_to_states() (in module safemdp), 6

P

path_to_boolean_matrix() (in module safemdp), 8
plot_S() (safemdp.GridWorld method), 5

R

reachable_set() (in module safemdp), 2
returnable_set() (in module safemdp), 2

S

safe_subpath() (in module safemdp), 8
SafeMDP (class in safemdp), 1

safemdp (module), 1

shortest_path() (in module safemdp), 8
states_to_nodes() (in module safemdp), 5

T

target_sample() (safemdp.GridWorld method), 5

U

update_confidence_interval()
method), 5
update_sets() (safemdp.GridWorld method), 5

(safemdp.GridWorld

15

	API Documentation
	Main classes
	SafeMDP
	link_graph_and_safe_set
	reachable_set
	returnable_set

	Grid world
	GridWorld
	states_to_nodes
	nodes_to_states
	draw_gp_sample
	grid_world_graph
	grid
	compute_true_safe_set
	compute_true_S_hat
	compute_S_hat0
	shortest_path
	path_to_boolean_matrix
	safe_subpath

	Utilities
	DifferenceKernel
	max_out_degree

	Indices and tables
	Python Module Index

